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Abstract

Rail profile irregularities are one of the main vibration sources to vehicle and track. In this paper derailment
of a wagon moving on cable-stayed bridge due to rail irregularities is investigated. The four-axle wagon
model is a three-dimensional, non-linear model of a train freight car with 38 DOF. Two parallel rails of the
track are modeled as Euler-Bernoulli beams on elastic points as rail pads. The bridge deck is modeled as a

plate supported by some cables. Using this model; the effects of wagon specifications, lateral position of
the rails and rail irregularities on wagon derailment have been studied.
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1. INTRODUCTION

To meet the economic, social and recreational
needs of the community for safe and efficient
transportation systems, more and more cable bridges
have been built throughout the world. The
investigation of bridge vibration under moving train
using different models has been widely reported in
the literature. In most of the previous studies the
cable-stayed bridge has been modeled as a planar
system. For example Au et al used 2-D model to
study bridge vibration due to random rail
irregularities [1]. They studied effects of number of
random samples, damping, class of railway, track
quality and initial motion of train vehicles on bridge
vibration. Using a planar vehicle/bridge model, the
vibration reduction of cable-stayed bridges subjected
to the passage of high-speed trains is studied by Yau
and Yang [2]. 2-D models cannot simulate lateral
vibration of the bridge. In addition wagon derailment
and hunting vibration cannot be investigated by these
models.

For the 3-D models, the finite element method has
been used as the main tool for bridge simulation. For
instance, using FEM, the vibration of coupled train
and cable-stayed bridge systems in cross winds has
been investigated by Xu et al [3]. Also, the dynamic
stability of trains moving over bridges shaken by
earthquakes has been studied by Yang and Wu [4].
Using this model the maximum allowable speed for

the train to run safely has been obtained under the
specified ground acceleration.

In this article, an analytical solution is presented
for simulation of the coupled system. A 3-D model of
the cable-stayed bridge, rails and freight wagon is
developed. Equations of motion of this model are
derived. Using the proposed model, the effects of
wagon parameters, lateral position of the rails and the
rail irregularities on wagon derailment are studied.

2. Brief Review on the Derailment Criteria

One of the criteria for prediction of train
derailment is derailment coefficient, which is defined
as the ratio of lateral to vertical load at the wheel-rail
contact point. The reduction of wheel normal force is
also taken as a measure of potential towards
derailment in some standards .The limiting values of
these parameters differ in different standards.
According to the British Standard [5] the limiting
values for these parameters are expressed as

Y12

Q (1)

A9 06
0,

In Japanese Standard [6], the maximum value of
the derailment coefficient is defined as
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In China, the limiting value of Y/Q is 1 [7]. In
North America, acceptable performance during the
rail cross-level variation test is that the axle sum Y/Q
never exceed 1.5, the maximum vehicle body roll
angle does not exceed 6° peak to peak, and the

Minimum vertical wheel load is never <10 percent
of the static wheel load [8].

3. System Model

Figure 1 show the bridge model adopted in the
present study. The bridge deck is modeled as a plate
supported by some cables. Also the bridge towers are
modeled as a beam in lateral and a bar in vertical
direction.

Rails are modeled as Euler-Bernoulli beams on
elastic points as rail pads (fig 2).

Figl.3D model of the bridge

' Rail

L AERIRTRTRTE T

Bridge Deck

Fig2.Side view of the system model
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Fig3.Side view of the wagon

Figd.Front view of wagon model

Table 1: Degrees of freedom of each part of the wagon
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longitudinal lateral vertical roll pitch yaw
Car bOdy £ £ £ & £ £
bogie frame * * * * * *
Wheel set * * * * * -
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4. Equations of Motions:
Deck Equation of Motion:

Describing the bridge deck as a plate, the vertical
vibration of the bridge deck is given by:

I yd dwn) dIweey) phdweyn 1 &
s 27 s 5% s = (FF F
a ey o n a D EYg

Where:

E = JK 08,083, )=, (D) +C, 00, 3, )=k, (5 )X x—x, )8y~ )
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(4)
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¢=2Nc+l
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Using Levy method, the solution of homogenous
form of Eq. (3) Can be expressed as [9]:

w,(5, 3,0 = X, (OF,, ()T, (1) = sin("%” XY, (DT, (1)

®)

Substituting Eq.(8) Into homogenous form of Eq.
(3) Yields:

[( TyyT - 2( )ZY‘”T+Y“”T+p‘ Y7 1sin®% x)=0

mn mn mn

¢ 9)
Using Separatlon of varlables, vibration
frequencies can be found as:
B S 2 R 2 U
ph, a a Yo, Y. T,,
(10)

And finally a differential equation can be derived
as follows:

phy @ 2 _(ﬂ)4)n1n -0

mn DJ mn a (11)
The bending moments and the shearing forces for
the two free edges at y=0 and y=b are equal to zero.
So the boundary conditions are:

Y(4) 2( )Y(Z) (

mn

M, sz(azm +, AL =D02 v, "y Y# =0

=0, W s b a b (12)
M SN

0).0,= (ay @ M}j =D, v,vxa)x,,ﬁ =0

¥=0b (13)
Y. and o, can be achieved by Substituting the
solution of Eq.(11) into Eq.(12) and Eq.(13) and
solving the obtained homogeneous system.
Solution of Eq.(3) Can be written in the form of
Eq.(8). With same X, and Y, from homogenous
solution. Substituting Eq.(8) Into Eq.(3) Yields:

N
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Multiplying Eq.(14) By “Xx (X)Ym(y)” and then

applying integral in the plate area yields the

second-order ordinary differential equations of

the plate vertical vibration in terms of the

generalized coordinate Tmn(t) as follows:
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5. Tower Equation of Motion:

Describing each tower as an Euler-Bernoulli
beam, the lateral vibration of tower is given by:

*w’ (x,1) *w! (x,1)
El ——F—+pA——F—=UF, —F)
dx ot * a7
in which
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follows:
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Using same method as explained in previous
section, the second-order ordinary differential
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Substituting Eq.(30) Into Eq.(26) Yields:
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Using same approach:
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6. Rail Equation of Motion:

Describing each rail as an Euler-Bernoulli beam,
the vertical vibration of rail is given by:

9w, (x,1) *w, (x,1)
EI T+ P4, — =F, +F,
ox ot i i (33)
In which
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The solution can be determined as:

L Lo
=Y X, ()T, ,(t)= sin(—x)T, ,(t)

I=1 I=1 a (3 7)
Substituting Eq.(37) Into Eq.(33) Yields:

T ,=F_+F
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The second-order ordinary differential equations
of the rail can be found as follows:
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(40)
7. Wagon Equation of Motion:

Two coordinate systems are assigned to each part
in the wagon model. One fixed to the object center of
mass (denoted by r) and rotating with it, and the fixed
in space at its center of mass initial position (denoted
by o). Also as shown in figure 2 a coordinate system
is fixed to the bridge deck as reference.

Using fig.5, the relationship between components
of an arbitrary vector in rotating and initial coordinate
systems can be given as:

RI=R. R, R,

1 0 0 cosff 0 sinf
=0 cos¢p —sing 0 1 0

0 sing cosg ||-sinf 0 cosf

siny  cosy O
0 1

cosy —siny 0}

(41

Also angular velocity can be obtained as:

o=yk+pB)+o"
=k + B(jcosy +isiny)+ (" cos B+ sin B)
=yk + B(jeosy +isiny)
+@(f cosycos f— jsiny cos S+ ksin )
= (Bsiny + @cosy cos B)i + (S cosy —@siny cos B) ]
+(y +@sin Bk

(42)
And angular accelerations are:
@ = fsiny + Byrcosy +@eosy cos B—@Bsin Bcosy
—@yrcos fsiny
@ = ffcosy — Byrsiny — @siny cos B+ @B sin Bsiny
— @y cos fcosy
& =y +@sin f+@Bcos B
(43)
For each wagon part, the equations of motion can
be written as:

st =T iy 103t & —strid =M —aF X1
d (45)

The summations of the forces and moments
applied to the car body are contained wagon body
weight, front and rear center plates and side pads
forces. The forces and moments of bogies are caused
by bogie weight, center plate, side pads and primary
suspensions forces. Finally primary suspensions
forces, wheelset weight and wheel-rail contact forces
cause forces and moments exerted to the wheelset
[10,11]
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8. Irregularities Model:
Rail irregularities generally have a random Line A Line Grade A
distribution, and are considered as one of the major Grade
source of wagon vibration and wheels derailment. 1 15.52%1078 4 2.75%1078
The major causes of these irregularities are: — —
. ; freg 2 | 8.84x107° 5 1.55x107
incompatible substrate conditions, whether 3 -
conditions, rail age and excessive train commutation 3 491x10° 6 0.88x10~

on rails [12].

The random rail irregularities are assumed to be
stationary random and ergodic processes in space,
with Gaussian amplitude probability densities and
zero mean values. They are characterized by their
respective one-sided power spectral density functions

G, (@) where @ is the route frequency. Fryba [13]
has summarized various commonly used power
spectral density functions. In the present study, the
power spectral density functions based on the results
of measurements on US railway tracks is adopted,
with the empirical formula for elevation of
irregularities as:

Aw; (a)Z + w,z)
e

G, (0)=

o' (0’ +0])

(46)

Where @, =0.0233 m™" and , =0.131m™

and the parameter A is a coefficient related to line

grade, as shown in Table 2.

A sample function of rail irregularities can be
generated numerically using the following series:

r (x)=iak cos(@x+@,) 47

k=1

Where @, is the amplitude of the cosine wave,
@, is a frequency within the interval [a),,a)u] in
which the power spectral density function is defined,

¢k is a random phase angle with uniform probability

distribution in the interval [0, 27 ] , X is the global

coordinate measured from the start of the rail section
and N is the total number of terms used to generate

the rail irregularities function. The parameters @,

and @), are computed using equations Eq.(48) and
Eq.(49):

a,=2,G, (®,)Aw 48)
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o, =0,+(k-%)Aw
Ao=(a,-a)/N

(49)

(50)
In which @, and @, are the upper and lower

limits of the frequency, and N is a sufficiently large
integer. Using equations Eq.(46-50), random rail
irregularities in each line grade can be generated.
Typical samples of rail irregularities of grade 4
produced by this method is shown in Figure 6.

9. Results and Discussions
To validate the model presented in this paper, its

predictions of the responses are compared with the
results reported by Au et al. [1]. In that reference, the

Impact factor of deck moment is obtained using
2D model analyzed by the FEM. The results are
compared in figure 7.

It can be seen that there is a close agreement
between the simulation results of this research and
those of [1].

In order to study the effects of various parameters
on wagon derailment, Evripos bridge in Greece is
chosen as a case study. The main parameters of the
wagon, rails and the bridge used in the simulation are
listed in Tables 3-5 [14].

The complete system equations are obtained by
combining the equations of motions of deck, towers,
rails and the wagon parts. The equations of motion
are solved numerically using Runge-Kutta method.
The effects of the rail lateral location and wagon
specifications on rail vehicle derailment have been
illustrated in figures 8-11.

10

Roughness (mm)

0 100 200 300

400 500 600 700
Distance (m)

Fig6.Samples of the railway track irregularities [1]

—&— curtent model |
== Au's model |

0025

Impact factor

0.005

30 40 50 60

wvelocity(mis)

Fig7.Comparison of 2D and 3D model
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Table 3.Main parameters of wagon

Parameter Value Parameter Value Parameter Value
L,, (m) 1.8 m ., (Kg) 1200 I ,,Z(Kg.mz) 11200
L, (m) 6.5 I ,(Kg.m?) 2200 I,.(Kg.m?) 680
m, (Kg) 5000 I,,(Kg.m’) 9400 I,,(Kg.m’) 73
Table 4.Main parameters of rail
Parameter Value Parameter Value Parameter Value
E, (GPa) 205.9 A(m2) 7.715%10-3 Li(m) 0.79
I, (m4) 3.217x105 K¢(N/m) 6.5x107 L.(m) 1.5
pr (kg/m3) 7860 Ci(N.s/m) 6.5%104 Nc 10
Table 5.Main parameters of bridge
Parameter Value Parameter Value Parameter Value
a(m) 395 E; . (GPa) 205.9 H; (m) 35
b(m) 13.5 LU 0.29 D.(inch) 0.6
H,(m) 0.45 ps(kg/m3) 7860

derailment coefficient

0.25F

35
Lateral Position (m)

Fig8. Effects of lateral location of rail on bridge deck on derailment coefficient (v=10m/s)

deralment coefficient

3
Lateral Position (m)
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As illustrated in figure 8, the first wheelset of each
bogie has the highest probability of derailment.
Figure 9 shows that the derailment coefficient is
affected by the lateral position of the rail. It can be
seen that, for each velocity, the possibility of wagon
derailment is maximum at a particular lateral position.
Figures 10-11 show that the derailment risk reduces
by increasing the weight of the wagon.

10. Conclusions

In this paper a 3-D nonlinear model is used to
investigate derailment of a wagon moving on cable-
stayed bridge due to rail irregularities. Using this
model; the effects of wagon specifications, lateral
position of the rails and rail irregularities on wagon
derailment have been studied and following results
have been concluded:

The first wheel set of each bogie has the most
probability of derailment.

There is an optimum lateral position for wagon in
which the possibility of derailment will be minimum.
This position is the function of wagon velocity.

Figl0. Effects of wagon weight on reduction of normal force

Reduction of normal force

V=10mis
V=20mis

Figll1. Effects of wagon weight on reduction of normal force
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List of Symbols

A |Cross section area o Geometric slope
C  |Fastener damping in vertical direction Q) Poisson's ratio
D [Flexural rigidity P Density
E  [Module of elasticity 0] IAngular velocity
F  |Force o) Relative frame
H  [Tower height O Horizontal direction
1 Second moment of area oy Lateral direction
K |Fastener stiffness in vertical direction () Vertical direction
L [Length or distance between different elements (@ bogie
N |[Number of. (e C™ cable
a  |Bridge length ()¢ F" fastener
b |Bridge width () K™ rail or tower
d  |Diameter of. ()o Initial frame
h  |Deck thickness O Rail
m  [Mass Owr Right side of tower
v [Velocity (rs Rail to bridge deck
w  Displacement Oew Rail to wheel
()s [Bridge deck (e Tower to bridge deck
()s |Bridge deck to rail Ow W™ wheel set
()s [Bridge deck to tower Owe 'Wagon
() [Tower Owr Wheel to rail
(O  [Left side of tower
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