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Abstract

In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously,
it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In
this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the

finite element method using commercial software ABAQUS. Comparison of the present simulation results
with the results of the experiments reported in the previous works indicated the validity of the numerical
analyses. A meta-model based on the feed-forward artificial neural networks are then obtained for modeling
of both the absorbed energy (E) and the peak crushing force (Fmax) with respect to design variables using
those data obtained from the finite element modeling. Using such obtained neural network models, a
modified multi-objective GA is used for the Pareto-based optimization of the aluminum foam-filled thin-
walled tubes considering three conflicting objectives such as energy absorption, weight of structure, and

peak crushing force.

Keywords: Aluminum foam, Crashworthiness, MLF, Multi-objective optimization, Genetic Algorithm, Pareto.

1. INTRODUCTION

Advances in technology have led to higher speed
of transportation which increases the probability of
traffic accident and serious human damages. Design
of auxiliary metal structural components capable to
sustain prescribed loads and dissipate undesirable
energies while undergoing plastic deformation is one
of the prime means of energy release protection.
Therefore, the crash characteristics of energy
absorbing components have received considerable
attention over the past decades [1-5].

In recent years, researchers have shown an interest
in using cellular structures (honeycombs, foams, etc.)
for energy absorption devices. Foams due to their low
weight and good crushing behaviors are nearly ideal
energy absorbers [6-8]. Using of aluminum foam
because of its efficiency and reproducible production
routes have been developed in the last year [9].
Nowadays, the design of modern vehicle structure
is driven by many competing criteria. Vehicle weight
reduction has been prevalent in the automotive

industry to reduce the fuel consumption. On the other
hand, design of structural components for the purpose
of both absorbing kinetic energy and attenuating the
maximum crushing force have become a special topic
in design research to ensure the occupant safety in the
event of a crash. Therefore, the energy absorbing
capability, the weight of energy absorbing
components, and the maximum crushing load are
important objective functions to be optimized
simultaneously as a complex multi-objective
optimization problem (MOP). In order to trade-off
among these conflicting objectives, the Pareto based
approach is considered in this work for such MOP. It
has been shown by some of authors [10] that very
interesting and important design facts can be
discovered by the Pareto-based optimization of
energy absorption systems. However, considering the
computational cost of performing such multi-
objective optimization of a complete dynamic model

, the direct use of FEM software is prohibitive, if not

impossible. Therefore, it would be greatly desirable to
use alternate simplified models instead of time-
consuming FEM during optimization process. In this
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way, either finite element analysis or experimental
procedure may be performed to obtain some training
and testing data for developing that meta-model.

In fact, system identification and modeling of
complex processes using input-output data have
always attracted many research efforts. In fact, system
identification techniques are applied in many fields in
order to model and predict the behaviors of unknown
and/or very complex systems based on given input-
output data [11]. In this way, soft-computing methods
[12], which concern computation in an imprecise
environment, have gained significant attention. The
main components of soft computing, namely, fuzzy
logic, neural network, and evolutionary algorithms
have shown great ability in solving complex non-
linear system identification and control problems.
Many research efforts have been expended to use of
evolutionary methods as effective tools for system
identification [13-18]. Among these methodologies,
multi-layer feed-forward (MLF) artificial neural
networks with a single hidden sigmoid layer and
biases are the most frequently used networks because
of their ability to approximate any function with a
finite number of discontinuities [19-21].

The present study aims at maximizing the energy
absorption capacity (E), minimizing the weight of
energy absorption structure (W), and minimizing the
peak crushing force (Fmax) for aluminum foam-filled
thin-walled tubes. Finite element modeling (FEM)
using commercial software ABAQUS are first
employed to determine the effects of geometrical
design variables on the energy

absorption and peak crushing force. A multi-

layered feed-forward neural network is then
constructed to precisely establish the relationship

between those objective functions (E and Fmax)
and the design variables using the data obtained by
FEM. The obtained meta-model is finally used in a
Pareto-based optimization approach to find the best
possible combination of energy absorption, weight of
structure and peak crushing force known as the Pareto
fronts. The corresponding variations of geometrical
design variables, known as Pareto set, constitute some
important and informative design principles which
can be effectively used for optimal design of
aluminum foam-filled tubes.

2. Finite element analysis of crushing behavior of
aluminum foam-filled tubes

In this section, finite element simulation is performed
in accordance with one of the test experiments carried
out by Seitzberger et al. [22]. The specimen has 4 cm
outer width, 25 cm length and its wall thickness is
1.5mm. Steel tubes have been made of RSt37 and
obtained from electrically welded precision profiles.
Uniaxial tension test results of material are shown in
Figure 1. The tube was filled with aluminum foam
(base material AIMg0.6Si0.3) that was produced by a
powder metallurgical production method, using
titanium hydride as foaming agent [9], [23]. Density
of the foam is about 680 kg/m3 and its axial
compression behavior is shown in Figure 2. The
specimen was foamed directly using the tubes as
moulds and during this foaming process the tubes
were heated beyond 600C.A universal test machine
was used to do experiments. To perform quasi-static
test conditions and reduce influence of inertia effects,
the specimen compressed without any bound between
two strong steel plates with 1 mm/s loading velocity.
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Figl.Fitted curve of the Johnson-Cook equation on the tension test results of tube material [22].

Explicit finite element method has proven
valuable in solving quasi-static problems. However, it
should be noted that the explicit solution method is

developed to model the events in which inertia plays a
dominant role in the solution such as high speed
dynamic impact problems. Moreover, the loading rate
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applied in actual quasi-static experiments is too slow
which increases the time step too much. Therefore, to
perform an accurate, low-cost and reliable quasi-static
analysis, the inertia effects and the time step must be
reduced, simultaneously. There are two special
approaches which could be employed in combination
to perform accurate and economic quasi-static
analyses using explicit procedure.

The minimum stable time increment in the explicit
dynamic analysis can be expressed as

At = LE\E (1)

where L° is the element length characteristic, E is
the young’s modulus, and p is the material density.
According to the equation (1), artificially scaling up
the material density by factor of f? increases the
stable time increment by factor of f. Therefore, total
time step will be decreased because fewer increments
are required to perform the same analysis. Scaling up
the mass, however, increases the inertia effects.
Therefore, to ensure the quasi-static process, the
loading rate should be kept very low. Another mass
scaling method is the scaling down the mass of the
material so that the inertial forces will be minimized.
When the mass is scaling down, the stable time
increments are increased and the time step of analysis
will also be increased. Therefore, to reduce the time
step, the loading rate must be accelerated [24]. In the

Table 1. Coefficients of curve fitted Johnson-Cook equation

A B N R? A

1.74e8 | 2.192e8 | 0.1604 | 0.9709 | 1.74e8

present study, a semi automatic mass scaling with
2.5e6 scaling factor is applied to reduce the
computational costs.

Foam filled tube was considered between two
rigid plates where one plate was completely fixed and
the other one was moved with 15 m/s constant axial
velocity up to 150mm. Surface to surface contact was
considered between plate and the tube with 0.5
friction coefficient. Tie constraint was applied
between foam and wall of tube. Self-contact
interaction was used to prevent interpenetration
between two folds during progressive plastic fold
formation.

Johnson-Cook constitutive model is used for

material modeling of steel in Abaqus/Explicit. In
this

way, Johnson-Cook equation's coefficients are
extracted by curve fitting using data obtained from
tensile test. Johnson-Cook coefficients are presented
in Table 1 and its curve is superimposed with the
tensile test curve in Figure 1. It should be noted that
strain rate in Johnson-Cook equation was eliminated
because of low speed deformation.

Data of axial compression test of aluminum foam
was used in ABAQUS/Explicit to model foam
properties.

A simple uniaxial compression test is sufficient to
extract foam properties. The Young' modulus and
Poisson's ratio for aluminum foam were 346 MPa and
0.01 respectively. The behavior of aluminum foam
was considered as isotropic crushable. 37 data points
extracted from experimentally obtained stress-strain
curve were entered directly for plastic behavior of the
foam. The ratio of yield strength in uniaxial
compression to yield strength in hydrostatic tension
and the plastic Poisson's ratio [25] were also 0.95 and
0 respectively. Uniform distribution density was
exerted 680 kg/m3 as well.(figure 2)

Internal energy, kinetic energy and plastic

dissipation  energy obtained from numerical
simulation are depicted in Figure 3. According to this
figure, kinetic energy is very small compared to the
internal energy and therefore the numerical
simulation can be considered as a quasi-static
analysis, confidently.
To validate numerical model by experimental results
four parameters were considered; maximum peak
force, total absorbed energy, mean crush force and
crush force efficiency. The results of numerical
simulation and experimental test are depicted in Table
2. The force-displacement diagram and structure
deformation obtained numerically are compared with
the results of experiment performed by Seitzberger et
al. [22] in Figure 4 and Figure 5. In Figure 4 and 5, it
can be observed that the number of force-
displacement peaks and troughs in numerical model
are similar to experimental results and also the
numerical and experimental fold formations are
identical. According to Table 2 and Figures 4 and 5
numerical models predicts experimental results
properly and the model can be implemented for more
analyses.

There are various parameters such as tube
thickness (t), tube width (C) and A factor in Johnson-
Cook equation of tube material that affect energy
absorption and peak crushing force.
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Fig2. Uniaxial compression test results of aluminum foam with 680kg/m? density [22].
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Fig3.Kinetic, internal and plastic dissipation energy for an aluminum foam-filled tube under quasi-static loading
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Fig4. Experimentally [22] and numerically obtained crushing force-displacement responses of aluminum foam-filled tube

Therefore, by changing the geometrical and element method wusing ABAQUS software.
material independent parameters t,C and A various Consequently, a meta-model can be constructed using
designs will be generated and evaluated by the finite the MLF neural networks, which will be further used
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for multi-objective Pareto based design of such
energy absorption structure. In this way, 30 various
analyses is performed using non-linear
ABAQUS/Explicit to simulate quasi-static test.
Results for some of the models are represented in
Table 3.

Fig5.. Comparison of experimental deformation [22] with
numerical prediction.

3. Modeling Using Multi-layer Feed-forward
Neural Networks

In principle, neural network has the power of a
universal approximator, i.e. it can realize an arbitrary
mapping of one vector space onto another vector
space [26-27]. The main advantage of neural
networks is the fact, that they are able to use some a
priori unknown information hidden in data (but they
are not able to extract it). Process of ‘capturing’ the
unknown information is called ‘learning of neural
network’ or ‘training of neural network’. In
mathematical formalism to learn means to adjust the
weight coefficients in such a way that some
conditions are fulfilled [28].

MLF neural networks, trained with a back-
propagation learning algorithm, are the most popular
neural networks. MLF networks are applied to a wide
variety of problems [29]. A MLF neural network
consists of neurons that are ordered into layers. The
first layer is called the input layer, the last layer is
called the output layer, and the layers between are
hidden layers.

To estimate absorbed energy and peak crushing
force from the finite element simulations MLF neural
networks were used. This MLF networks consist of

Inputs Hidden layer

Output layer

Fig6. Schematic of MLF neural networks with three layers.

one hidden layer with ten neurons and one neuron
as output layer using tan-sigmoid and pulerlin transfer
functions respectively. Schematic of MLF neural
networks is shown in Figure 6. A back-propagation
(BP) algorithm with Levenberg—Marquardt (LM)
optimization technique was employed to train MLF
neural networks. By reducing mean square error
(MSE) for each epoch the accuracy of the networks
was improved. The accuracy of neural network

models are give in Tables 4, 5 and Figures 7
through 9 show comparisons between FEM results
with neural network results.

The models obtained in this section are now
utilized for a Pareto multi-objective crashworthiness
optimization of aluminum foam-filled tubes
considering the energy absorption (E), weight of
structure (W), and peak crushing load (F,.) as
conflicting objectives. Such study may unveil some
interesting and important optimal design principles
that would not have been obtained without the use of
a multi-objective optimization approach.

4. Multi-objective crashworthiness optimization
aluminum foam-filled thin-walled tube

Multi-objective optimization, which is also called
multi criteria optimization or vector optimization, has
been defined as finding a vector of decision variables
satisfying constraints to give acceptable values to all
objective functions [30-31]. In these problems, there
are several objective or cost functions (a vector of
objectives) to be optimized (minimized or
maximized) simultaneously. These objectives often
conflict with each other so that improving one of
them will deteriorate another. Therefore, there is no
single optimal solution as the best with respect to all
the objective functions. Instead, there is a set of
optimal solutions, known as Pareto optimal solutions
or Pareto front [32-36] for multi-objective
optimization problems. The concept of Pareto front or
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set of optimal solutions in the space of objective
functions in multi-objective optimization problems
(MOPs) stands for a set of solutions that are non-
dominated to each other but are superior to the rest of
solutions in the search space. This means that it is not

o # # # |7
Find the vector X = [xl 2 Xy x”] to optimize
F(X)=[fi(X), £, O] 5

subject to m inequality constraints

possible to find a single solution to be superior to all 8 i(X )0, i=lto m’ 3)
other solutions with respect to all objectives so that and p equality constraints

changing the vector of design variables in such a h(X)=0 j=1to p
Pareto front consisting of these non-dominated J ’ , (4

solutions could not lead to the improvement of all
objectives simultaneously. Consequently, such a
change will lead to deteriorating of at least one
objective. Thus, each solution of the Pareto set
includes at least one objective inferior to that of
another solution in that Pareto set, although both are
superior to others in the rest of search space. Such
problems can be mathematically defined as:

where X €X' is the vector of decision or design

variables, and F(X)€ R is the vector of objective
functions, which must each be either minimized or
maximized. However, without loss of generality, it
is assumed that all objective functions are to be
minimized. Such multi-objective minimization

Table 2. Comparison of numerical results with experimental results [22].

Experimental Numerical Error (%)
Peak Crushing Force (kN) 97 89.6 7.6
Absorbed Energy (kJ) 11.36 11.46 0.1
Mean Crush Force (kN) 75.74 76.4 0.9
Crush Force Efficiency 0.78 0.85 9

Table 3. Samples of numerical results.

Number | t(mm) | C (mm) A (MPa) Absorbed Energy (kJ) Peak Crushing Force (kN) Weight of Structure (kg)

1 1.48 60 197 18.41 148 1.244

2 1.45 70 186 24.37 168.8 1.584

3 1.43 50 205 14.53 116.8 0.92

14 1.17 62.5 180 16.11 121.6 1.22

15 1.15 425 200 9.93 80 0.648

16 1.13 78.75 188 23 159.2 1.776
28 0.85 71.25 197 16.48 1144 1.384
29 0.82 51.25 185 9.84 73.2 0.776
30 0.8 61.25 205 12.82 92 1.048
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Table 4. Statistical measures of the obtained MLF models for

training set

R> | MAPE(%) RSME

Absorbed Energy 0.993 1.517 1.9kJ

Peak Crushing Force 0.918 0.654 11.33 kN

Specific Energy
0.973 0.764 1.265 kJ/kg

Absorption

based on Pareto approach can be conducted using
some definitions:

Definition of Pareto dominance

U =[u1,u2,...,uk]e R*

A vector is dominant to

vector V. = [v,,v, ..., v, Je R*

(denoted by U <V ) if and only if
quantification of the importance of each objective

Definition of a Pareto Set

For a given MOP, a Pareto set P *is a set in the
decision variable space consisting of all the Pareto
optimal vectors

P*={XeQl1 X eQ:FX)<F(X))}.
In other words, there is no other X~ as a vector of

decision variables in € that dominates any X €P*.

Definition of a Pareto front

For a given MOP, the Pareto front PT* is a set of
vector of objective functions which are obtained using
the vectors of decision variables in the Pareto set P*,
that is PF-

={F(X)=(f,(X),[5,(X),... [ (X)): X €
P* }.In other words, the Pareto front PT* is a set of

the vectors of objective functions mapped from P*.
Evolutionary algorithms have been widely used
for multi-objective optimization because of their
natural properties suited for these types of problems.
This is mostly because of their parallel or population-
based search approach. Therefore, most of the
difficulties and deficiencies within the classical
methods in solving multi-objective optimization
problems are eliminated. For example, there is no

Vie {1,2,...,k} u; v, Jje{l2,..k} o

V. . u, L.
J In other words, there is at least one ’/ which is

V. . .. .
smaller than "/ whilst the remaining U g are either

smaller or equal to corresponding V ’s.
Definition of Pareto optimality

%k
A point X e (Q is a feasible region in R”
satisfying equations (2) and (3) is said to be Pareto
optimal (minimal) with respect to all X € Q if and

only if F(X )< F(X). Alternatively, it can be

readily restated as
vie{l2,...k} .

fXDHS (X)) A

k
fj(X*) < f].(X) . In other words, the solution X

is said to be Pareto optimal (minimal) if no other

VXeQ-{X"}
Fefl2,...k}

k
solution can be found to dominate X using the
definition of Pareto domin

need for either several runs to find the Pareto front or
using numerical weights. In this way, the original
non-dominated sorting procedure given by Goldberg
[37] was the catalyst for several different versions of
multi-objective  optimization algorithms [32-33].
However, it is very important that the genetic
diversity within the population be preserved
sufficiently. This main issue in MOPs has been
addressed by many related research works [38]. In
this paper, the premature convergence of MOEAs is
prevented and the solutions are directed and
distributed along the true Pareto front using a recently
developed algorithm, namely, the e-elimination
diversity algorithm by some of authors, [39].

In order to investigate the optimal design foam
filled tubes in different conditions of design variables
(t, C and A), two multi-objective (2-objective and 3-
objectve) optimization problems (MOPs) have been
solved. The MLF neural network models obtained in
previous sections are now deployed in these 2-
objective and 3-objectve optimization problems.

4.1 Two-objective optimization problem

The two conflicting objectives in this section are
specific energy absorption (SEA) and peak crushing
force (F,.) to be simultaneously optimized with
respect to the design variables. The 2-objective
optimization problem can be formulated in the
following form:

International Journal of Automotive Engineering

Vol. 2, Number 3, July 2012

N nitro™"

Created with

protessional

download the free trial online at nitrog ol .com '|:-|-:-{—: ssicnal


http://www.iust.ac.ir/ijae/article-1-146-en.html
https://uedu.iust.ac.ir/ijae/article-1-146-en.html

Downloaded from www.iust.ac.ir at 20:22 IRST on Friday March 3rd 2017

[ Downloaded from uedu.iust.ac.ir on 2025-12-02 ]

A.Khalkhali and S.Samareh Mousavi

201

-
Maximize
f;= SEA (t, C, A) (Specific Energy Absorption)
Minimize
< f,=F(t, C, A) (Peak Crushing Force) 5)
0.8mm < t <1.5mm

40mm < ¢ < 80mm
\_ 190MPa< A <210MPa

Where t, C and A are thickness of the tube, width
of the tube and A coefficient in the Johnson-Cook
equation of tube's material respectively. The
evolutionary process of Pareto multi-objective
optimization is accomplished by using population size
of 200 in all runs with crossover probability Pc as 0.7
for 500 generations.

Table 5. Statistical measures of the obtained MLF models for

testing set.

R’ MAPE (%) RSME
Absorbed Energy 0.935 9.291 3.01kJ
Peak Crushing
0.968 3.494 8.892 kN
Force
Specific Energy
0.826 3.462 1.408 kJ/kg
Absorption

The corresponding Pareto front of two objectives
(SEA) and (Fmax) has been shown in Figure 10. It is
clear from this figure that choosing appropriate value
for specific energy absorption (SEA) or peak crushing
force (Fmax), for obtaining a better value of one
objective would cause a worse value of another
objective. However, if the set of decision variables is
selected based on each of the corresponding Pareto
sets, it will lead to the best possible combination of
those two objectives shown in Figure 10. In other
words, if any other pair of decision variables is
chosen, the corresponding values of the pair of
objectives, i.e., (SEA) and (Fmax), will locate a point
inferior to the obtained Pareto front. Such inferior
area in the space of the two objectives is in fact
up/left side of figure. Clearly, there are some
important optimal design facts between the two
objective functions which have been discovered by
the Pareto optimization of the MLF neural network

models obtained using the finite element analysis of
the aluminum foam-filled tubes. Such important
design facts could not have been found without the
multi-objective Pareto optimization of those MLF
models. Values of peak crushing force and absorbed
energy for the optimum points p, 1, s and t obtained
from multi-objective optimization of MLF model is
presented in Table 6.

4.2 Three-objective optimization problem

A multi-objective optimization design of foam
filled tube including three objectives can offer more
choices for a designer. Moreover, such 3-objective
optimization can subsume all those 2-objective
optimization results presented in the previous section.
This will allow finding trade-off optimum design
points from the view point of all three objective
functions simultaneously. Therefore, in this section,
three objective functions, namely, energy absorption
(E), weight of structure (W), and peak crushing force
(Fnax) are chosen for the multi-objective optimization.
It is evident that £ is maximized whilst both W and
F . are minimized simultaneously in a Pareto sense
of the multi-objective optimization process of foam
filled tubes. The 3-objective optimization problem
can be formulated in the following form:

(" Maximize
fi= E(t, C, A) (Absorbed Energy)
Minimize
fo=W(t, C, A)(Weight of Structure) (6)
< Minimize
f3= Fpa(t, C, A) (Peak Crushing Load)
0.8mm < t <1.5mm
40mm < ¢ < 80mm
. 190MPa< A <210MPa

A population of 400 individuals with a crossover
probability of 0.7 has been used in 500 generations
for such 3-objective optimization problems.

Figure 11 depicts the non-dominated individuals
of 3-objective optimization in the plane of (W-E).
Such non-dominated individuals of both 3-objective
optimization have been shown in the plane of (W-
Fa0) and (E- F,,,,) in Figures 12 and 13, respectively.
It should be noted that there is a single set of
individuals as a result of the 3-objective optimization
of E, W and F,,, that are shown in different planes.
Therefore, there are some points in each plane that
may dominate others in the case of 3-objective
optimization. However, these individuals are all non-
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Fig10. Pareto front of specific energy absorption and peak crushing force.

Table 6. The values of objective functions and their associated design variables of the optimum points of the 2-objective optimization

process.

Optimum Desired Points P r T S
Specific Energy Absorption (kJ/kg) 18.17 18.17 20.57 36.11
Peak Crushing Force (kN) 21.06 50.47 95.11 100.1
t (mm) 0.8 0.96 1.47 1.5
C (mm) 40 40.01 40.01 41.73
A (MPa) 190 190.06 206.51 207.11

Table 7. The values of objective functions and their associated design variables of the optimum desired points selected from the 3-objective

optimization process.

Optimum Desired Points e f
Absorbed Energy (kJ) 9.638 15.54
Peak Crushing Force (kN) 36.03 101.71
Weight of Structure (kg) 0.4133 0.7889
t (mm) 0.8 1.203
C (mm) 40 54.28
A (Mpa) 190 193.81
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dominated when considering all three objectives
simultaneously. By careful investigation of the results
of 3-objective optimization it can readily be observed
that the results of such 3-objective optimization
provide more optimal choices for the designer.

It is now possible to seek an optimum design point
(desired point) which is located almost on all Pareto
fronts of Figures 11 through 13. This can be achieved
by two different methods employed in this paper,
namely, the nearest to ideal point method and
mapping method. In the nearest to ideal point method,
first, an ideal point with the best values of each
objective functions is considered. Secondly, the
distances among all non-dominated points to the ideal
point is calculated. In this method, the desired point
represents minimum distance to the ideal point. In the
mapping method, the values of objective functions of
all non-dominated point are mapped into interval O
and 1. Using the sum of these values for each non-

-
[
1

-
[«
T

o
IS
T

-
N
T

dominated point, the desired point simply represents
the minimum of the sum of those values.

Optimum design points e, f are the points which
have been obtained from the nearest to ideal point
method and mapping method, respectively. In the
figure 12, plain of (W- F,,,,), point e dominates point
f. Further, both points e and f are non-dominated as
they shown in Figures 11 and 13, the plane of (W-E)
and the plain of (E- F,,) respectively. The
comparison of the values of objective functions
associated with the optimum points e and f obtained
from the 3-objective functions optimization is given
in Table 7.

Consequently, such multi-objective optimization
of energy absorption (E), weight of structure (W) and
peak crushing load (F,,) provides more optional
choices of design variables based on Pareto non-
dominated points which can be selected from a trade-
off point of view.
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Fig12. Peak crushing force versus the weight of structure in 3-objective optimization
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Figl3. Absorbed Energy versus peak crushing Force in 3-objective optimization.
[2]. Johnson, W., Impact Strength of Material,

5. Conclusion

Genetic algorithms have been successfully used
for multi-objective Pareto based optimization of
aluminum foam-filled tubes. Two different meta-
model for specific energy absorption and peak
crushing force have been found by multi layer feed
forward neural network using some numerically
obtained input-output data using the FEM. The
derived meta-models have been then used in
evolutionary multi-objective Pareto based
optimization processes. The objective functions
which conflict with each other were selected as
absorbed energy (E), weight of structure (W) and
peak crushing force (Fmax). The multi-objective
crashworthiness optimization of aluminum foam-
filled tubes led to the discovering some important
trade-offs among those objective functions. Such
combined application of MLF neural network
modeling of numerical input-output data and
subsequent non-dominated Pareto optimization
process of the obtained meta-models is very
promising in discovering useful and interesting design
relationships.
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